A Global Solution for the Structured Total Least Squares Problem with Block Circulant Matrices
نویسندگان
چکیده
We study the Structured Total Least Squares (STLS) problem of system of linear equations Ax = b, where A has a block circulant structure with N blocks. We show that by applying the Discrete Fourier Transform (DFT), the STLS problem decomposes into N unstructured Total Least Squares (TLS) problems. The N solutions of these problems are then assembled to generate the optimal global solution of the STLS problem. Similar results are obtained for elementary block circulant matrices. Here the optimal solution is obtained by assembling two solutions: one of an unstructured TLS problem and the second of a multidimensional TLS problem. ∗MINERVA Optimization Center, Department of Industrial Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel. E-mail: {morbt@ie,becka@tx}.technion.ac.il. The research was partially supported by BSF grant #2002038
منابع مشابه
Theory of block-pulse functions in numerical solution of Fredholm integral equations of the second kind
Recently, the block-pulse functions (BPFs) are used in solving electromagnetic scattering problem, which are modeled as linear Fredholm integral equations (FIEs) of the second kind. But the theoretical aspect of this method has not fully investigated yet. In this article, in addition to presenting a new approach for solving FIE of the second kind, the theory of both methods is investigated as a...
متن کاملGlobal least squares solution of matrix equation $sum_{j=1}^s A_jX_jB_j = E$
In this paper, an iterative method is proposed for solving matrix equation $sum_{j=1}^s A_jX_jB_j = E$. This method is based on the global least squares (GL-LSQR) method for solving the linear system of equations with the multiple right hand sides. For applying the GL-LSQR algorithm to solve the above matrix equation, a new linear operator, its adjoint and a new inner product are dened. It is p...
متن کاملA Total Least Squares Methodfor Toeplitz
A Newton method to solve total least squares problems for Toeplitz systems of equations is considered. When coupled with a bisection scheme, which is based on an eecient algorithm for factoring Toeplitz matrices, global convergence can be guaranteed. Circulant and approximate factorization preconditioners are proposed to speed convergence when a conjugate gradient method is used to solve linear...
متن کاملFast Algorithms for Structured Least Squares and Total Least Squares Problems
We consider the problem of solving least squares problems involving a matrix M of small displacement rank with respect to two matrices Z 1 and Z 2. We develop formulas for the generators of the matrix M (H) M in terms of the generators of M and show that the Cholesky factorization of the matrix M (H) M can be computed quickly if Z 1 is close to unitary and Z 2 is triangular and nilpotent. These...
متن کاملUsing an Efficient Penalty Method for Solving Linear Least Square Problem with Nonlinear Constraints
In this paper, we use a penalty method for solving the linear least squares problem with nonlinear constraints. In each iteration of penalty methods for solving the problem, the calculation of projected Hessian matrix is required. Given that the objective function is linear least squares, projected Hessian matrix of the penalty function consists of two parts that the exact amount of a part of i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 27 شماره
صفحات -
تاریخ انتشار 2005